Nuprl Lemma : regular-int-seq_wf

[k:ℤ]. ∀[f:ℕ+ ⟶ ℤ].  (k-regular-seq(f) ∈ ℙ)


Proof




Definitions occuring in Statement :  regular-int-seq: k-regular-seq(f) nat_plus: + uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T regular-int-seq: k-regular-seq(f) so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  all_wf nat_plus_wf le_wf absval_wf subtract_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality multiplyEquality setElimination rename hypothesisEquality applyEquality natural_numberEquality addEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (k-regular-seq(f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_46_14
Last ObjectModification: 2015_12_28-AM-00_24_44

Theory : reals


Home Index