Nuprl Lemma : int-to-real_wf

[n:ℤ]. (r(n) ∈ ℝ)


Proof




Definitions occuring in Statement :  int-to-real: r(n) real: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-to-real: r(n) real: nat_plus: + regular-int-seq: k-regular-seq(f) all: x:A. B[x] prop: top: Top absval: |i| decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A and: P ∧ Q subtract: m
Lemmas referenced :  zero-mul mul-distributes-right add-commutes mul-associates mul-commutes mul-swap minus-one-mul mul-distributes int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermMultiply_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties regular-int-seq_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality lambdaEquality multiplyEquality natural_numberEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality lemma_by_obid hypothesis lambdaFormation isectElimination axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality voidElimination voidEquality dependent_functionElimination minusEquality addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll

Latex:
\mforall{}[n:\mBbbZ{}].  (r(n)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-06_47_57
Last ObjectModification: 2016_01_17-AM-01_45_15

Theory : reals


Home Index