Nuprl Lemma : ss-point_wf

[ss:SeparationSpace]. (Point ∈ Type)


Proof




Definitions occuring in Statement :  ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  or: P ∨ Q all: x:A. B[x] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ separation-space: SeparationSpace ss-point: Point member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf or_wf not_wf all_wf subtype_rel_self
Rules used in proof :  axiomEquality rename setElimination functionExtensionality because_Cache hypothesisEquality cumulativity lambdaEquality equalitySymmetry equalityTransitivity functionEquality setEquality universeEquality isectElimination extract_by_obid instantiate tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination dependentIntersectionElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  (Point  \mmember{}  Type)



Date html generated: 2016_11_08-AM-09_10_43
Last ObjectModification: 2016_10_31-AM-11_00_51

Theory : inner!product!spaces


Home Index