Nuprl Lemma : separation-space_wf

SeparationSpace ∈ 𝕌'


Proof




Definitions occuring in Statement :  separation-space: SeparationSpace member: t ∈ T universe: Type
Definitions unfolded in proof :  or: P ∨ Q all: x:A. B[x] implies:  Q prop: guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T separation-space: SeparationSpace
Lemmas referenced :  or_wf not_wf all_wf subtype_rel_self record+_wf top_wf record_wf
Rules used in proof :  rename setElimination dependentIntersectionEqElimination functionExtensionality because_Cache hypothesisEquality functionEquality setEquality instantiate applyEquality dependentIntersectionElimination tokenEquality universeEquality equalitySymmetry equalityTransitivity atomEquality hypothesis cumulativity lambdaEquality sqequalRule thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
SeparationSpace  \mmember{}  \mBbbU{}'



Date html generated: 2016_11_08-AM-09_10_40
Last ObjectModification: 2016_10_31-AM-11_00_38

Theory : inner!product!spaces


Home Index