Nuprl Lemma : record+_wf

[T:𝕌']. ∀[B:T ⟶ 𝕌']. ∀[z:Atom].  (Tz:B[self] ∈ 𝕌')


Proof




Definitions occuring in Statement :  record+: record+ uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T record+: record+ all: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_apply: x[s] bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B
Lemmas referenced :  dep-isect_wf eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin cumulativity hypothesisEquality lambdaEquality functionEquality atomEquality isectElimination hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination because_Cache applyEquality functionExtensionality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate independent_functionElimination voidElimination universeEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[B:T  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].    (Tz:B[self]  \mmember{}  \mBbbU{}')



Date html generated: 2018_05_21-PM-08_38_18
Last ObjectModification: 2017_07_26-PM-06_02_38

Theory : general


Home Index