Nuprl Lemma : dep-isect_wf
∀A:𝕌'. ∀B:A ⟶ 𝕌'.  (x:A ⋂ B[x] ∈ 𝕌')
Proof
Definitions occuring in Statement : 
dep-isect: x:A ⋂ B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
dependentIntersectionEquality, 
applyEquality
Latex:
\mforall{}A:\mBbbU{}'.  \mforall{}B:A  {}\mrightarrow{}  \mBbbU{}'.    (x:A  \mcap{}  B[x]  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_15-PM-02_07_01
Last ObjectModification:
2015_12_27-AM-00_28_07
Theory : dependent!intersection
Home
Index