Nuprl Lemma : record_wf
∀[T:Atom ⟶ 𝕌']. (record(x.T[x]) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
record: record(x.T[x])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
record: record(x.T[x])
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
cumulativity, 
atomEquality, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  (record(x.T[x])  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_15-PM-06_38_31
Last ObjectModification:
2015_12_27-AM-11_53_43
Theory : general
Home
Index