Nuprl Lemma : record_wf

[T:Atom ⟶ 𝕌']. (record(x.T[x]) ∈ 𝕌')


Proof




Definitions occuring in Statement :  record: record(x.T[x]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T record: record(x.T[x]) so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality cumulativity atomEquality applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  (record(x.T[x])  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_15-PM-06_38_31
Last ObjectModification: 2015_12_27-AM-11_53_43

Theory : general


Home Index