Nuprl Lemma : path-ss-point

[X:Top]
  (Point(Path(X)) {f:{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)}  ⟶ Point(X)| ∀t,t':{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} .  (t ≡ t'  t ≡ t\000C')} )


Proof




Definitions occuring in Statement :  path-ss: Path(X) unit-ss: 𝕀 ss-eq: x ≡ y ss-point: Point(ss) rleq: x ≤ y int-to-real: r(n) real: uall: [x:A]. B[x] top: Top all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  ss-point: Point(ss) path-ss: Path(X) ss-fun: X ⟶ Y ss-function: ss-function(X;Y;f) fun-ss: A ⟶ ss set-ss: {x:ss P[x]} mk-ss: Point=P #=Sep cotrans=C all: x:A. B[x] member: t ∈ T eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x]
Lemmas referenced :  unit_ss_point_lemma rec_select_update_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  isect_memberFormation_alt axiomSqEquality

Latex:
\mforall{}[X:Top]
    (Point(Path(X))  \msim{}  \{f:\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}    {}\mrightarrow{}  Point(X)| 
                                          \mforall{}t,t':\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}  .    (t  \mequiv{}  t'  {}\mRightarrow{}  f  t  \mequiv{}  f  t')\}  )



Date html generated: 2020_05_20-PM-01_20_12
Last ObjectModification: 2020_02_08-AM-11_41_42

Theory : intuitionistic!topology


Home Index