Nuprl Lemma : unit_ss_point_lemma

Point(𝕀{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} 


Proof




Definitions occuring in Statement :  unit-ss: 𝕀 ss-point: Point(ss) rleq: x ≤ y int-to-real: r(n) real: and: P ∧ Q set: {x:A| B[x]}  natural_number: $n sqequal: t
Definitions unfolded in proof :  and: P ∧ Q rccint: [l, u] i-member: r ∈ I real: real-ss: btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C set-ss: {x:ss P[x]} unit-ss: 𝕀 record-select: r.x ss-point: Point(ss)
Rules used in proof :  sqequalReflexivity computationStep sqequalTransitivity sqequalRule sqequalSubstitution

Latex:
Point(\mBbbI{})  \msim{}  \{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\} 



Date html generated: 2018_07_29-AM-10_11_28
Last ObjectModification: 2018_06_29-AM-10_00_55

Theory : constructive!algebra


Home Index