Nuprl Lemma : unit_ss_point_lemma
Point(𝕀) ~ {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} 
Proof
Definitions occuring in Statement : 
unit-ss: 𝕀, 
ss-point: Point(ss), 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
and: P ∧ Q, 
rccint: [l, u], 
i-member: r ∈ I, 
real: ℝ, 
real-ss: ℝ, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-ss: Point=P #=Sep symm=Sym cotrans=C, 
set-ss: {x:ss | P[x]}, 
unit-ss: 𝕀, 
record-select: r.x, 
ss-point: Point(ss)
Rules used in proof : 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalRule, 
sqequalSubstitution
Latex:
Point(\mBbbI{})  \msim{}  \{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\} 
Date html generated:
2018_07_29-AM-10_11_28
Last ObjectModification:
2018_06_29-AM-10_00_55
Theory : constructive!algebra
Home
Index