Nuprl Lemma : rccint_wf
∀[a,b:ℝ]. ([a, b] ∈ Interval)
Proof
Definitions occuring in Statement :
rccint: [l, u]
,
interval: Interval
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
rccint: [l, u]
,
interval: Interval
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
real_wf,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
independent_pairEquality,
inlEquality,
hypothesisEquality,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
isectElimination,
thin,
because_Cache
Latex:
\mforall{}[a,b:\mBbbR{}]. ([a, b] \mmember{} Interval)
Date html generated:
2016_05_18-AM-08_19_55
Last ObjectModification:
2015_12_27-PM-11_55_45
Theory : reals
Home
Index