Nuprl Lemma : rccint_wf
∀[a,b:ℝ].  ([a, b] ∈ Interval)
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rccint: [l, u]
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
real_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairEquality, 
inlEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbR{}].    ([a,  b]  \mmember{}  Interval)
Date html generated:
2016_05_18-AM-08_19_55
Last ObjectModification:
2015_12_27-PM-11_55_45
Theory : reals
Home
Index