Nuprl Lemma : path-end-mem-open
∀X:SeparationSpace. ∀f:Point(Path(X)). ∀O:Open(X).
  (f@r1 ∈ O 
⇒ (∃z:{z:ℝ| z ∈ [r0, r1)} . ∀t:{t:ℝ| t ∈ [z, r1]} . f@t ∈ O))
Proof
Definitions occuring in Statement : 
ss-mem-open: x ∈ O
, 
ss-open: Open(X)
, 
path-at: p@t
, 
path-ss: Path(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
rcoint: [l, u)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ss-mem-open: x ∈ O
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
prop: ℙ
, 
ss-open: Open(X)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
path-end-mem-basic, 
ss-mem-basic_wf, 
path-at_wf, 
member_rccint_lemma, 
member_rcoint_lemma, 
rleq_transitivity, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
all_wf, 
ss-mem-open_wf, 
rleq-int, 
false_wf, 
rleq_weakening_equal, 
ss-open_wf, 
ss-point_wf, 
path-ss_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_pairFormation, 
because_Cache, 
independent_pairFormation, 
productEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
setEquality, 
lambdaEquality
Latex:
\mforall{}X:SeparationSpace.  \mforall{}f:Point(Path(X)).  \mforall{}O:Open(X).
    (f@r1  \mmember{}  O  {}\mRightarrow{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [r0,  r1)\}  .  \mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  [z,  r1]\}  .  f@t  \mmember{}  O))
Date html generated:
2020_05_20-PM-01_22_55
Last ObjectModification:
2018_07_06-PM-07_12_52
Theory : intuitionistic!topology
Home
Index