Nuprl Lemma : path-end-mem-open

X:SeparationSpace. ∀f:Point(Path(X)). ∀O:Open(X).
  (f@r1 ∈  (∃z:{z:ℝz ∈ [r0, r1)} . ∀t:{t:ℝt ∈ [z, r1]} f@t ∈ O))


Proof




Definitions occuring in Statement :  ss-mem-open: x ∈ O ss-open: Open(X) path-at: p@t path-ss: Path(X) ss-point: Point(ss) separation-space: SeparationSpace rcoint: [l, u) rccint: [l, u] i-member: r ∈ I int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ss-mem-open: x ∈ O exists: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B prop: ss-open: Open(X) subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  path-end-mem-basic ss-mem-basic_wf path-at_wf member_rccint_lemma member_rcoint_lemma rleq_transitivity int-to-real_wf rleq_wf real_wf i-member_wf rccint_wf all_wf ss-mem-open_wf rleq-int false_wf rleq_weakening_equal ss-open_wf ss-point_wf path-ss_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis dependent_pairFormation because_Cache independent_pairFormation productEquality applyEquality sqequalRule isectElimination isect_memberEquality voidElimination voidEquality setElimination rename dependent_set_memberEquality natural_numberEquality independent_isectElimination setEquality lambdaEquality

Latex:
\mforall{}X:SeparationSpace.  \mforall{}f:Point(Path(X)).  \mforall{}O:Open(X).
    (f@r1  \mmember{}  O  {}\mRightarrow{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [r0,  r1)\}  .  \mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  [z,  r1]\}  .  f@t  \mmember{}  O))



Date html generated: 2020_05_20-PM-01_22_55
Last ObjectModification: 2018_07_06-PM-07_12_52

Theory : intuitionistic!topology


Home Index