Nuprl Lemma : path-end-mem-basic

X:SeparationSpace. ∀f:Point(Path(X)). ∀B:ss-basic(X).
  (f@r1 ∈  (∃z:{z:ℝz ∈ [r0, r1)} . ∀t:{t:ℝt ∈ [z, r1]} f@t ∈ B))


Proof




Definitions occuring in Statement :  ss-mem-basic: x ∈ B ss-basic: ss-basic(X) path-at: p@t path-ss: Path(X) ss-point: Point(ss) separation-space: SeparationSpace rcoint: [l, u) rccint: [l, u] i-member: r ∈ I int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uimplies: supposing a prop: sq_stable: SqStable(P) true: True squash: T less_than: a < b real-cont: real-cont(f;a;b) exists: x:A. B[x] top: Top uiff: uiff(P;Q) real-fun: real-fun(f;a;b) real: btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep cotrans=C real-ss: record-select: r.x ss-point: Point(ss) subtype_rel: A ⊆B guard: {T} rfun: I ⟶ℝ rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rge: x ≥ y satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:A [B[x]] rless: x < y or: P ∨ Q rneq: x ≠ y nat_plus: + ss-mem-basic: x ∈ B l_all: (∀x∈L.P[x]) ss-basic: ss-basic(X) int_seg: {i..j-} lelt: i ≤ j < k i-member: r ∈ I rcoint: [l, u) rccint: [l, u] pi1: fst(t) rnonneg: rnonneg(x) rleq: x ≤ y so_apply: x[s] nat: so_lambda: λ2x.t[x] subtract: m sq_type: SQType(T)
Lemmas referenced :  ss-mem-basic_wf path-at_wf member_rccint_lemma rleq-int istype-false rleq_weakening_equal int-to-real_wf rleq_wf ss-basic_wf ss-point_wf path-ss_wf separation-space_wf rleq_weakening_rless trivial-rleq-radd radd_wf req-iff-rsub-is-0 itermConstant_wf itermVar_wf itermSubtract_wf ss-eq_weakening ss-fun_wf rleq_transitivity rccint-icompact rabs-difference-bound-rleq iff_weakening_uiff rabs_wf sq_stable__rleq rmax_lb rless-int rmax_strict_lb rleq-rmax rmax_wf member_rcoint_lemma rless_wf istype-void rsub_wf rless-implies-rless small-reciprocal-real req_wf real-ss_wf real-ss-eq real_wf subtype_rel_self ss-ap_wf rccint_wf i-member_wf ss-eq_functionality ss-ap_functionality path-at_functionality real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality_wrt_implies itermAdd_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rdiv_wf rless_functionality_wrt_implies real_term_value_add_lemma select_wf int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma length_wf int_seg_wf rcoint_wf le_witness_for_triv exists_wf all_wf primrec-wf2 istype-less_than subtract_wf length_wf_nat le-add-cancel2 add-commutes add-zero zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 int_seg_subtype subtype_rel_function istype-le int_term_value_subtract_lemma rmax_ub decidable__equal_int int_formula_prop_eq_lemma intformeq_wf int_subtype_base subtype_base_sq rleq_weakening sq_stable__subtype_rel subtype_rel_sets_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule dependent_functionElimination Error :memTop,  hypothesis natural_numberEquality productElimination independent_functionElimination independent_pairFormation because_Cache independent_isectElimination dependent_set_memberEquality_alt productIsType functionIsType imageElimination promote_hyp productEquality baseClosed imageMemberEquality dependent_pairFormation_alt voidElimination isect_memberEquality_alt setIsType applyEquality rename setElimination inhabitedIsType lambdaEquality_alt approximateComputation int_eqEquality equalityTransitivity equalitySymmetry unionElimination inrFormation_alt equalityIstype functionExtensionality spreadEquality equalityIsType1 functionIsTypeImplies setEquality closedConclusion functionEquality multiplyEquality minusEquality addEquality inlFormation_alt intEquality cumulativity instantiate

Latex:
\mforall{}X:SeparationSpace.  \mforall{}f:Point(Path(X)).  \mforall{}B:ss-basic(X).
    (f@r1  \mmember{}  B  {}\mRightarrow{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [r0,  r1)\}  .  \mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  [z,  r1]\}  .  f@t  \mmember{}  B))



Date html generated: 2020_05_20-PM-01_22_52
Last ObjectModification: 2020_01_06-PM-07_34_21

Theory : intuitionistic!topology


Home Index