Nuprl Lemma : path-end-mem-basic
∀X:SeparationSpace. ∀f:Point(Path(X)). ∀B:ss-basic(X).
  (f@r1 ∈ B 
⇒ (∃z:{z:ℝ| z ∈ [r0, r1)} . ∀t:{t:ℝ| t ∈ [z, r1]} . f@t ∈ B))
Proof
Definitions occuring in Statement : 
ss-mem-basic: x ∈ B
, 
ss-basic: ss-basic(X)
, 
path-at: p@t
, 
path-ss: Path(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
rcoint: [l, u)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uimplies: b supposing a
, 
prop: ℙ
, 
sq_stable: SqStable(P)
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
real-cont: real-cont(f;a;b)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
real-fun: real-fun(f;a;b)
, 
real: ℝ
, 
btrue: tt
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-ss: Point=P #=Sep cotrans=C
, 
real-ss: ℝ
, 
record-select: r.x
, 
ss-point: Point(ss)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rfun: I ⟶ℝ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
ss-mem-basic: x ∈ B
, 
l_all: (∀x∈L.P[x])
, 
ss-basic: ss-basic(X)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
i-member: r ∈ I
, 
rcoint: [l, u)
, 
rccint: [l, u]
, 
pi1: fst(t)
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
so_apply: x[s]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtract: n - m
, 
sq_type: SQType(T)
Lemmas referenced : 
ss-mem-basic_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq-int, 
istype-false, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq_wf, 
ss-basic_wf, 
ss-point_wf, 
path-ss_wf, 
separation-space_wf, 
rleq_weakening_rless, 
trivial-rleq-radd, 
radd_wf, 
req-iff-rsub-is-0, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
ss-eq_weakening, 
ss-fun_wf, 
rleq_transitivity, 
rccint-icompact, 
rabs-difference-bound-rleq, 
iff_weakening_uiff, 
rabs_wf, 
sq_stable__rleq, 
rmax_lb, 
rless-int, 
rmax_strict_lb, 
rleq-rmax, 
rmax_wf, 
member_rcoint_lemma, 
rless_wf, 
istype-void, 
rsub_wf, 
rless-implies-rless, 
small-reciprocal-real, 
req_wf, 
real-ss_wf, 
real-ss-eq, 
real_wf, 
subtype_rel_self, 
ss-ap_wf, 
rccint_wf, 
i-member_wf, 
ss-eq_functionality, 
ss-ap_functionality, 
path-at_functionality, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality_wrt_implies, 
itermAdd_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rdiv_wf, 
rless_functionality_wrt_implies, 
real_term_value_add_lemma, 
select_wf, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
length_wf, 
int_seg_wf, 
rcoint_wf, 
le_witness_for_triv, 
exists_wf, 
all_wf, 
primrec-wf2, 
istype-less_than, 
subtract_wf, 
length_wf_nat, 
le-add-cancel2, 
add-commutes, 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
add-associates, 
condition-implies-le, 
not-le-2, 
int_seg_subtype, 
subtype_rel_function, 
istype-le, 
int_term_value_subtract_lemma, 
rmax_ub, 
decidable__equal_int, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_subtype_base, 
subtype_base_sq, 
rleq_weakening, 
sq_stable__subtype_rel, 
subtype_rel_sets_simple
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
functionIsType, 
imageElimination, 
promote_hyp, 
productEquality, 
baseClosed, 
imageMemberEquality, 
dependent_pairFormation_alt, 
voidElimination, 
isect_memberEquality_alt, 
setIsType, 
applyEquality, 
rename, 
setElimination, 
inhabitedIsType, 
lambdaEquality_alt, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
inrFormation_alt, 
equalityIstype, 
functionExtensionality, 
spreadEquality, 
equalityIsType1, 
functionIsTypeImplies, 
setEquality, 
closedConclusion, 
functionEquality, 
multiplyEquality, 
minusEquality, 
addEquality, 
inlFormation_alt, 
intEquality, 
cumulativity, 
instantiate
Latex:
\mforall{}X:SeparationSpace.  \mforall{}f:Point(Path(X)).  \mforall{}B:ss-basic(X).
    (f@r1  \mmember{}  B  {}\mRightarrow{}  (\mexists{}z:\{z:\mBbbR{}|  z  \mmember{}  [r0,  r1)\}  .  \mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  [z,  r1]\}  .  f@t  \mmember{}  B))
Date html generated:
2020_05_20-PM-01_22_52
Last ObjectModification:
2020_01_06-PM-07_34_21
Theory : intuitionistic!topology
Home
Index