Nuprl Lemma : rabs_wf
∀[x:ℝ]. (|x| ∈ ℝ)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
rabs-as-rmax, 
rmax_wf, 
rminus_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}].  (|x|  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-07_00_02
Last ObjectModification:
2015_12_28-AM-00_32_53
Theory : reals
Home
Index