Nuprl Lemma : rmax_wf
∀[x,y:ℝ].  (rmax(x;y) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rmax: rmax(x;y), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rmax: rmax(x;y), 
real: ℝ, 
regular-int-seq: k-regular-seq(f), 
all: ∀x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
true: True, 
nat_plus: ℕ+, 
nat: ℕ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
guard: {T}, 
cand: A c∧ B, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j 
Lemmas referenced : 
le_weakening, 
absval-imax-difference, 
le_functionality, 
iff_weakening_equal, 
mul-imax, 
true_wf, 
squash_wf, 
le_wf, 
imax_lb, 
nat_wf, 
subtract_wf, 
absval_wf, 
nat_plus_subtype_nat, 
real_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
imax_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
lambdaEquality, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
multiplyEquality, 
addEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
imageElimination, 
intEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    (rmax(x;y)  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-06_58_54
Last ObjectModification:
2016_01_17-AM-01_47_43
Theory : reals
Home
Index