Nuprl Lemma : le_functionality
∀[a,b,c,d:ℤ].  ({a ≤ d supposing b ≤ c}) supposing ((c ≤ d) and (b ≥ a ))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
le_transitivity, 
le_wf, 
less_than'_wf, 
ge_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
voidElimination
Latex:
\mforall{}[a,b,c,d:\mBbbZ{}].    (\{a  \mleq{}  d  supposing  b  \mleq{}  c\})  supposing  ((c  \mleq{}  d)  and  (b  \mgeq{}  a  ))
Date html generated:
2016_05_13-PM-03_30_49
Last ObjectModification:
2015_12_26-AM-09_46_27
Theory : arithmetic
Home
Index