Nuprl Lemma : rabs-as-rmax

[x:Top]. (|x| rmax(x;-(x)))


Proof




Definitions occuring in Statement :  rabs: |x| rmax: rmax(x;y) rminus: -(x) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  rminus: -(x) rmax: rmax(x;y) rabs: |x| uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  absval-sqequal-imax top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom

Latex:
\mforall{}[x:Top].  (|x|  \msim{}  rmax(x;-(x)))



Date html generated: 2016_05_18-AM-07_00_00
Last ObjectModification: 2015_12_28-AM-00_32_49

Theory : reals


Home Index