Nuprl Lemma : rabs-as-rmax
∀[x:Top]. (|x| ~ rmax(x;-(x)))
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
rmax: rmax(x;y)
, 
rminus: -(x)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
rminus: -(x)
, 
rmax: rmax(x;y)
, 
rabs: |x|
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
absval-sqequal-imax, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[x:Top].  (|x|  \msim{}  rmax(x;-(x)))
Date html generated:
2016_05_18-AM-07_00_00
Last ObjectModification:
2015_12_28-AM-00_32_49
Theory : reals
Home
Index