Nuprl Lemma : real_term_value_sub_lemma

b,a,f:Top.  (real_term_value(f;a (-) b) real_term_value(f;a) real_term_value(f;b))


Proof




Definitions occuring in Statement :  real_term_value: real_term_value(f;t) rsub: y itermSubtract: left (-) right top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  real_term_value: real_term_value(f;t) itermSubtract: left (-) right int_term_ind: int_term_ind all: x:A. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid hypothesis

Latex:
\mforall{}b,a,f:Top.    (real\_term\_value(f;a  (-)  b)  \msim{}  real\_term\_value(f;a)  -  real\_term\_value(f;b))



Date html generated: 2017_10_02-PM-07_17_56
Last ObjectModification: 2017_04_03-PM-08_36_39

Theory : reals


Home Index