Nuprl Lemma : rleq-int

n,m:ℤ.  (r(n) ≤ r(m) ⇐⇒ n ≤ m)


Proof




Definitions occuring in Statement :  rleq: x ≤ y int-to-real: r(n) le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  all: x:A. B[x] rleq: x ≤ y iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: prop: rev_implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top uiff: uiff(P;Q)
Lemmas referenced :  rnonneg-int int_formula_prop_wf int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermSubtract_wf itermConstant_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le le_wf iff_wf real_wf rnonneg_wf rsub-int subtract_wf int-to-real_wf rsub_wf rnonneg_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation impliesFunctionality lemma_by_obid dependent_functionElimination isectElimination hypothesisEquality hypothesis independent_isectElimination independent_functionElimination applyEquality lambdaEquality setElimination rename sqequalRule intEquality unionElimination natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}n,m:\mBbbZ{}.    (r(n)  \mleq{}  r(m)  \mLeftarrow{}{}\mRightarrow{}  n  \mleq{}  m)



Date html generated: 2016_05_18-AM-07_05_06
Last ObjectModification: 2016_01_17-AM-01_50_51

Theory : reals


Home Index