Nuprl Lemma : rleq-int
∀n,m:ℤ.  (r(n) ≤ r(m) 
⇐⇒ n ≤ m)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rleq: x ≤ y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
Lemmas referenced : 
rnonneg-int, 
int_formula_prop_wf, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
le_wf, 
iff_wf, 
real_wf, 
rnonneg_wf, 
rsub-int, 
subtract_wf, 
int-to-real_wf, 
rsub_wf, 
rnonneg_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
impliesFunctionality, 
lemma_by_obid, 
dependent_functionElimination, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
intEquality, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}n,m:\mBbbZ{}.    (r(n)  \mleq{}  r(m)  \mLeftarrow{}{}\mRightarrow{}  n  \mleq{}  m)
Date html generated:
2016_05_18-AM-07_05_06
Last ObjectModification:
2016_01_17-AM-01_50_51
Theory : reals
Home
Index