Nuprl Lemma : rsub-int
∀[n:ℤ]. ∀m:ℤ. ((r(n) - r(m)) = r(n - m))
Proof
Definitions occuring in Statement : 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
rsub: x - y
, 
implies: P 
⇒ Q
, 
true: True
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsub_wf, 
int-to-real_wf, 
subtract_wf, 
req_wf, 
radd_wf, 
rminus_wf, 
req_weakening, 
squash_wf, 
true_wf, 
minus-one-mul, 
add-commutes, 
minus-one-mul-top, 
uiff_transitivity3, 
real_wf, 
rminus-int, 
req_functionality, 
radd-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
minusEquality, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}m:\mBbbZ{}.  ((r(n)  -  r(m))  =  r(n  -  m))
Date html generated:
2017_10_02-PM-07_17_31
Last ObjectModification:
2017_07_28-AM-07_21_10
Theory : reals
Home
Index