Nuprl Lemma : req_weakening
∀[a,b:ℝ].  a = b supposing a = b ∈ ℝ
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req-equiv, 
req_witness, 
equal_wf, 
real_wf, 
and_wf, 
req_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality
Latex:
\mforall{}[a,b:\mBbbR{}].    a  =  b  supposing  a  =  b
Date html generated:
2016_10_26-AM-09_03_17
Last ObjectModification:
2016_07_12-AM-08_13_19
Theory : reals
Home
Index