Nuprl Lemma : req_weakening

[a,b:ℝ].  supposing b ∈ ℝ


Proof




Definitions occuring in Statement :  req: y real: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  req-equiv req_witness equal_wf real_wf and_wf req_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productElimination dependent_functionElimination hyp_replacement dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality setElimination rename setEquality

Latex:
\mforall{}[a,b:\mBbbR{}].    a  =  b  supposing  a  =  b



Date html generated: 2016_10_26-AM-09_03_17
Last ObjectModification: 2016_07_12-AM-08_13_19

Theory : reals


Home Index