Nuprl Lemma : req-equiv
EquivRel(ℝ;x,y.x = y)
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
real: ℝ
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
real_wf, 
req_wf, 
bdd-diff_wf, 
equiv_rel_subtype, 
nat_plus_wf, 
bdd-diff-equiv, 
equiv_rel_functionality_wrt_iff, 
iff_weakening_uiff, 
req-iff-bdd-diff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
functionEquality, 
intEquality, 
sqequalRule, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
productElimination
Latex:
EquivRel(\mBbbR{};x,y.x  =  y)
Date html generated:
2016_05_18-AM-06_50_26
Last ObjectModification:
2015_12_28-AM-00_29_04
Theory : reals
Home
Index