Nuprl Lemma : req-equiv

EquivRel(ℝ;x,y.x y)


Proof




Definitions occuring in Statement :  req: y real: equiv_rel: EquivRel(T;x,y.E[x; y])
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] real: so_lambda: λ2y.t[x; y] prop: so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  real_wf req_wf bdd-diff_wf equiv_rel_subtype nat_plus_wf bdd-diff-equiv equiv_rel_functionality_wrt_iff iff_weakening_uiff req-iff-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid hypothesis lambdaEquality sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename because_Cache functionEquality intEquality sqequalRule independent_isectElimination independent_functionElimination lambdaFormation productElimination

Latex:
EquivRel(\mBbbR{};x,y.x  =  y)



Date html generated: 2016_05_18-AM-06_50_26
Last ObjectModification: 2015_12_28-AM-00_29_04

Theory : reals


Home Index