Nuprl Lemma : equiv_rel_subtype

[T,S:Type]. ∀[R:T ⟶ T ⟶ Type].  EquivRel(T;x,y.R[x;y])  EquivRel(S;x,y.R[x;y]) supposing S ⊆T


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  equiv_rel_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule axiomEquality hypothesis thin rename lambdaFormation sqequalHypSubstitution independent_pairFormation productElimination promote_hyp dependent_functionElimination hypothesisEquality applyEquality because_Cache lemma_by_obid isectElimination lambdaEquality universeEquality functionEquality cumulativity

Latex:
\mforall{}[T,S:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].
    EquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  EquivRel(S;x,y.R[x;y])  supposing  S  \msubseteq{}r  T



Date html generated: 2016_05_13-PM-04_15_02
Last ObjectModification: 2015_12_26-AM-11_30_05

Theory : rel_1


Home Index