Nuprl Lemma : equiv_rel_subtype
∀[T,S:Type]. ∀[R:T ⟶ T ⟶ Type].  EquivRel(T;x,y.R[x;y]) 
⇒ EquivRel(S;x,y.R[x;y]) supposing S ⊆r T
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
equiv_rel_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
universeEquality, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T,S:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].
    EquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  EquivRel(S;x,y.R[x;y])  supposing  S  \msubseteq{}r  T
Date html generated:
2016_05_13-PM-04_15_02
Last ObjectModification:
2015_12_26-AM-11_30_05
Theory : rel_1
Home
Index