Nuprl Lemma : req-iff-bdd-diff
∀[x,y:ℝ].  uiff(x = y;bdd-diff(x;y))
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
bdd-diff: bdd-diff(f;g)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
req: x = y
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
true: True
, 
guard: {T}
Lemmas referenced : 
bdd-diff-regular, 
less_than_wf, 
real_wf, 
bdd-diff_wf, 
sq_stable__le, 
all_wf, 
le_wf, 
false_wf, 
nat_plus_wf, 
nat_wf, 
subtract_wf, 
absval_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
dependent_set_memberEquality, 
lambdaFormation, 
because_Cache, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  =  y;bdd-diff(x;y))
Date html generated:
2016_05_18-AM-06_50_18
Last ObjectModification:
2016_01_17-AM-01_45_50
Theory : reals
Home
Index