Nuprl Lemma : req-iff-bdd-diff

[x,y:ℝ].  uiff(x y;bdd-diff(x;y))


Proof




Definitions occuring in Statement :  req: y real: bdd-diff: bdd-diff(f;g) uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  req: y uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False real: subtype_rel: A ⊆B nat: prop: bdd-diff: bdd-diff(f;g) exists: x:A. B[x] less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T nat_plus: + less_than: a < b true: True guard: {T}
Lemmas referenced :  bdd-diff-regular less_than_wf real_wf bdd-diff_wf sq_stable__le all_wf le_wf false_wf nat_plus_wf nat_wf subtract_wf absval_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation cut introduction sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination lemma_by_obid isectElimination natural_numberEquality applyEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation dependent_set_memberEquality lambdaFormation because_Cache independent_functionElimination imageMemberEquality baseClosed imageElimination independent_isectElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  =  y;bdd-diff(x;y))



Date html generated: 2016_05_18-AM-06_50_18
Last ObjectModification: 2016_01_17-AM-01_45_50

Theory : reals


Home Index