Nuprl Lemma : bdd-diff_wf

[f,g:ℕ+ ⟶ ℤ].  (bdd-diff(f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) nat_plus: + uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bdd-diff: bdd-diff(f;g) so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf all_wf nat_plus_wf le_wf absval_wf subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (bdd-diff(f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_46_18
Last ObjectModification: 2015_12_28-AM-00_24_47

Theory : reals


Home Index