Nuprl Lemma : bdd-diff-regular
∀[x,y:ℕ+ ⟶ ℤ]. ∀[k,l:ℕ+].
  (∀n:ℕ+. (|(x n) - y n| ≤ ((2 * k) + (2 * l)))) supposing (bdd-diff(x;y) and k-regular-seq(x) and l-regular-seq(y))
Proof
Definitions occuring in Statement : 
bdd-diff: bdd-diff(f;g)
, 
regular-int-seq: k-regular-seq(f)
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
true: True
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtract: n - m
, 
regular-int-seq: k-regular-seq(f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
gt: i > j
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
Lemmas referenced : 
le-add-cancel, 
minus-one-mul-top, 
mul-associates, 
mul-commutes, 
mul-swap, 
mul-distributes, 
minus-zero, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
false_wf, 
and_wf, 
decidable__lt, 
pos_mul_arg_bounds, 
all_functionality_wrt_uimplies, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_formula_prop_and_lemma, 
intformand_wf, 
multiply_functionality_wrt_le, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
set_subtype_base, 
int_subtype_base, 
nat_plus_subtype_nat, 
absval_pos, 
absval_mul, 
left_mul_subtract_distrib, 
add-zero, 
zero-add, 
zero-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
minus-one-mul, 
add-associates, 
minus-minus, 
minus-add, 
int-triangle-inequality, 
add_functionality_wrt_le, 
le_weakening, 
le_functionality, 
iff_weakening_equal, 
absval_sym, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
less_than_wf, 
decidable__le, 
nat_properties, 
nat_plus_properties, 
nat_wf, 
regular-int-seq_wf, 
bdd-diff_wf, 
subtract_wf, 
absval_wf, 
less_than'_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
because_Cache, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
independent_pairEquality, 
isectElimination, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
intEquality, 
voidElimination, 
minusEquality, 
voidEquality, 
dependent_set_memberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
sqequalIntensionalEquality, 
independent_pairFormation, 
inlFormation
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[k,l:\mBbbN{}\msupplus{}].
    (\mforall{}n:\mBbbN{}\msupplus{}.  (|(x  n)  -  y  n|  \mleq{}  ((2  *  k)  +  (2  *  l))))  supposing 
          (bdd-diff(x;y)  and 
          k-regular-seq(x)  and 
          l-regular-seq(y))
Date html generated:
2016_05_18-AM-06_47_36
Last ObjectModification:
2016_01_17-AM-01_47_24
Theory : reals
Home
Index