Nuprl Lemma : all_functionality_wrt_uimplies
∀[S,T:Type]. ∀[P:S ⟶ ℙ]. ∀[Q:T ⟶ ℙ].
  (∀x:T. {Q[x] supposing P[x]}) 
⇒ {∀x:T. Q[x] supposing ∀x:S. P[x]} supposing S = T ∈ Type
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
isect_wf, 
equal_wf
Rules used in proof : 
functionEquality, 
universeEquality, 
instantiate, 
because_Cache, 
equalitySymmetry, 
hyp_replacement, 
cumulativity, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
lambdaFormation, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
introduction, 
cut, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
isectEquality, 
equalityTransitivity, 
dependent_functionElimination, 
functionExtensionality
Latex:
\mforall{}[S,T:Type].  \mforall{}[P:S  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x:T.  \{Q[x]  supposing  P[x]\})  {}\mRightarrow{}  \{\mforall{}x:T.  Q[x]  supposing  \mforall{}x:S.  P[x]\}  supposing  S  =  T
Date html generated:
2018_05_21-PM-00_00_07
Last ObjectModification:
2018_05_15-PM-04_40_32
Theory : core_2
Home
Index