Nuprl Lemma : all_functionality_wrt_uimplies

[S,T:Type]. ∀[P:S ⟶ ℙ]. ∀[Q:T ⟶ ℙ].
  (∀x:T. {Q[x] supposing P[x]})  {∀x:T. Q[x] supposing ∀x:S. P[x]} supposing T ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] prop: implies:  Q member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] guard: {T} all: x:A. B[x]
Lemmas referenced :  all_wf isect_wf equal_wf
Rules used in proof :  functionEquality universeEquality instantiate because_Cache equalitySymmetry hyp_replacement cumulativity applyEquality lambdaEquality hypothesisEquality isectElimination sqequalHypSubstitution lemma_by_obid lambdaFormation rename thin hypothesis axiomEquality introduction cut isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution isectEquality equalityTransitivity dependent_functionElimination functionExtensionality

Latex:
\mforall{}[S,T:Type].  \mforall{}[P:S  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x:T.  \{Q[x]  supposing  P[x]\})  {}\mRightarrow{}  \{\mforall{}x:T.  Q[x]  supposing  \mforall{}x:S.  P[x]\}  supposing  S  =  T



Date html generated: 2018_05_21-PM-00_00_07
Last ObjectModification: 2018_05_15-PM-04_40_32

Theory : core_2


Home Index