Nuprl Lemma : pos_mul_arg_bounds

a,b:ℤ.  ((a b) > ⇐⇒ ((a > 0) ∧ (b > 0)) ∨ (a < 0 ∧ b < 0))


Proof




Definitions occuring in Statement :  less_than: a < b gt: i > j all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q gt: i > j or: P ∨ Q cand: c∧ B decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top nat_plus: + squash: T label: ...$L... t true: True subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  gt_wf or_wf less_than_wf int_trichot decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermMultiply_wf itermMinus_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_mul_lemma int_term_value_minus_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf mul_cancel_in_lt mul_bounds_1b squash_wf true_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality hypothesisEquality natural_numberEquality hypothesis productEquality intEquality dependent_functionElimination unionElimination inrFormation minusEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll dependent_set_memberEquality because_Cache equalitySymmetry hyp_replacement Error :applyLambdaEquality,  inlFormation productElimination applyEquality imageElimination equalityTransitivity imageMemberEquality baseClosed universeEquality independent_functionElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  *  b)  >  0  \mLeftarrow{}{}\mRightarrow{}  ((a  >  0)  \mwedge{}  (b  >  0))  \mvee{}  (a  <  0  \mwedge{}  b  <  0))



Date html generated: 2016_10_21-AM-09_58_35
Last ObjectModification: 2016_07_12-AM-05_12_30

Theory : int_2


Home Index