Nuprl Lemma : int_trichot
∀i,j:ℤ.  (i < j ∨ (i = j ∈ ℤ) ∨ (i > j))
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
gt: i > j
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
gt: i > j
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
intformor_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
decidable__lt, 
equal_wf, 
or_wf, 
less_than_wf, 
decidable__or
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll
Latex:
\mforall{}i,j:\mBbbZ{}.    (i  <  j  \mvee{}  (i  =  j)  \mvee{}  (i  >  j))
Date html generated:
2016_05_14-AM-07_20_17
Last ObjectModification:
2016_01_07-PM-03_59_50
Theory : int_2
Home
Index