Nuprl Lemma : mul_bounds_1b

[a,b:ℕ+].  0 < b


Proof




Definitions occuring in Statement :  nat_plus: + less_than: a < b uall: [x:A]. B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + uimplies: supposing a top: Top subtype_rel: A ⊆B
Lemmas referenced :  member-less_than nat_plus_wf mul-commutes zero-mul mul_preserves_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :inhabitedIsType,  hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin extract_by_obid natural_numberEquality multiplyEquality setElimination rename independent_isectElimination Error :universeIsType,  lemma_by_obid intEquality voidEquality voidElimination lambdaEquality applyEquality

Latex:
\mforall{}[a,b:\mBbbN{}\msupplus{}].    0  <  a  *  b



Date html generated: 2019_06_20-AM-11_26_43
Last ObjectModification: 2018_09_26-AM-10_58_39

Theory : arithmetic


Home Index