Nuprl Lemma : mul_bounds_1b
∀[a,b:ℕ+].  0 < a * b
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
top: Top
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
member-less_than, 
nat_plus_wf, 
mul-commutes, 
zero-mul, 
mul_preserves_lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
extract_by_obid, 
natural_numberEquality, 
multiplyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
Error :universeIsType, 
lemma_by_obid, 
intEquality, 
voidEquality, 
voidElimination, 
lambdaEquality, 
applyEquality
Latex:
\mforall{}[a,b:\mBbbN{}\msupplus{}].    0  <  a  *  b
Date html generated:
2019_06_20-AM-11_26_43
Last ObjectModification:
2018_09_26-AM-10_58_39
Theory : arithmetic
Home
Index