Nuprl Lemma : mul_preserves_lt

[a,b:ℤ]. ∀[n:ℕ+].  a < supposing a < b


Proof




Definitions occuring in Statement :  nat_plus: + less_than: a < b uimplies: supposing a uall: [x:A]. B[x] multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q nat_plus: + rev_uimplies: rev_uimplies(P;Q) prop: all: x:A. B[x] implies:  Q squash: T subtract: m subtype_rel: A ⊆B top: Top true: True
Lemmas referenced :  less-iff-positive less_than_wf member-less_than nat_plus_wf mul_positive subtract_wf squash_wf true_wf minus-one-mul mul-commutes add-commutes minus-one-mul-top mul-distributes mul-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination multiplyEquality setElimination rename because_Cache sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry intEquality dependent_functionElimination independent_functionElimination hyp_replacement applyEquality lambdaEquality imageElimination natural_numberEquality voidElimination voidEquality minusEquality addEquality imageMemberEquality baseClosed

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    n  *  a  <  n  *  b  supposing  a  <  b



Date html generated: 2019_06_20-AM-11_23_22
Last ObjectModification: 2019_01_27-PM-03_10_12

Theory : arithmetic


Home Index