Nuprl Lemma : less-iff-positive

[x,y:ℤ].  uiff(x < y;0 < x)


Proof




Definitions occuring in Statement :  less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] or: P ∨ Q all: x:A. B[x] implies:  Q subtract: m top: Top
Lemmas referenced :  less_than_wf subtract_wf member-less_than add-monotonic add-inverse zero-add add-associates minus-one-mul add-swap add-commutes add-mul-special zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality because_Cache intEquality sqequalRule productElimination independent_pairEquality isect_memberEquality independent_isectElimination equalityTransitivity equalitySymmetry minusEquality inlFormation dependent_functionElimination independent_functionElimination voidElimination voidEquality multiplyEquality

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  <  y;0  <  y  -  x)



Date html generated: 2019_06_20-AM-11_22_32
Last ObjectModification: 2018_08_17-PM-00_02_42

Theory : arithmetic


Home Index