Nuprl Lemma : left_mul_subtract_distrib
∀[a,b,c:ℤ].  ((c * (a - b)) = ((c * a) - c * b) ∈ ℤ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesis, 
unionElimination, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
hypothesisEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
axiomEquality
Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((c  *  (a  -  b))  =  ((c  *  a)  -  c  *  b))
Date html generated:
2016_05_14-PM-04_27_43
Last ObjectModification:
2016_01_14-PM-11_34_54
Theory : num_thy_1
Home
Index