Nuprl Lemma : left_mul_subtract_distrib

[a,b,c:ℤ].  ((c (a b)) ((c a) b) ∈ ℤ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] multiply: m subtract: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  int_formula_prop_wf int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesis unionElimination isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll axiomEquality

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((c  *  (a  -  b))  =  ((c  *  a)  -  c  *  b))



Date html generated: 2016_05_14-PM-04_27_43
Last ObjectModification: 2016_01_14-PM-11_34_54

Theory : num_thy_1


Home Index