Nuprl Lemma : req_wf
∀[x,y:ℝ].  (x = y ∈ ℙ)
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
req: x = y
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
nat_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbR{}].    (x  =  y  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_50_15
Last ObjectModification:
2015_12_28-AM-00_28_50
Theory : reals
Home
Index