Nuprl Lemma : req_wf

[x,y:ℝ].  (x y ∈ ℙ)


Proof




Definitions occuring in Statement :  req: y real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T req: y so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  all_wf nat_plus_wf le_wf absval_wf subtract_wf nat_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality setElimination rename hypothesisEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  =  y  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_50_15
Last ObjectModification: 2015_12_28-AM-00_28_50

Theory : reals


Home Index