Nuprl Lemma : bdd-diff-equiv

EquivRel(ℕ+ ⟶ ℤ;f,g.bdd-diff(f;g))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) nat_plus: + function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q prop: uall: [x:A]. B[x] trans: Trans(T;x,y.E[x; y]) bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A squash: T nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] subtract: m ge: i ≥  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_plus_wf bdd-diff_wf false_wf le_wf squash_wf true_wf absval_pos subtract_wf nat_plus_properties decidable__le less_than_wf satisfiable-full-omega-tt intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf iff_weakening_equal all_wf absval_wf absval_sym minus-add minus-minus minus-one-mul add-commutes nat_wf nat_properties intformand_wf itermAdd_wf int_formula_prop_and_lemma int_term_value_add_lemma decidable__equal_int intformeq_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_minus_lemma add-is-int-iff subtract-is-int-iff and_wf equal_wf le_functionality le_weakening int-triangle-inequality add_functionality_wrt_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaFormation functionEquality cut introduction extract_by_obid hypothesis intEquality sqequalHypSubstitution isectElimination thin functionExtensionality applyEquality hypothesisEquality because_Cache dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule lambdaEquality imageElimination equalityTransitivity equalitySymmetry setElimination rename dependent_functionElimination unionElimination independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination multiplyEquality minusEquality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion setEquality hyp_replacement Error :applyLambdaEquality

Latex:
EquivRel(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{};f,g.bdd-diff(f;g))



Date html generated: 2016_10_26-AM-09_02_38
Last ObjectModification: 2016_07_12-AM-08_12_54

Theory : reals


Home Index