Nuprl Lemma : req_witness

[x,y:ℝ].  ((x y)  n.<λ_.Ax, Ax, Ax> ∈ y))


Proof




Definitions occuring in Statement :  req: y real: uall: [x:A]. B[x] implies:  Q member: t ∈ T lambda: λx.A[x] pair: <a, b> axiom: Ax
Definitions unfolded in proof :  req: y uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] le: A ≤ B and: P ∧ Q real: subtype_rel: A ⊆B top: Top uimplies: supposing a not: ¬A prop: guard: {T}
Lemmas referenced :  member-not less_than'_wf absval_wf subtract_wf istype-void nat_plus_wf istype-le real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt lambdaEquality_alt independent_pairEquality extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality applyEquality setElimination rename because_Cache hypothesis hypothesisEquality isect_memberEquality_alt voidElimination independent_isectElimination universeIsType axiomEquality functionIsType dependent_functionElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isectIsTypeImplies productElimination independent_functionElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    ((x  =  y)  {}\mRightarrow{}  (\mlambda{}n.<\mlambda{}$_{}$.Ax,  Ax,  Ax>  \mmember{}  x  =  y))



Date html generated: 2019_10_16-PM-03_07_06
Last ObjectModification: 2018_11_08-PM-05_56_58

Theory : reals


Home Index