Nuprl Lemma : req_witness
∀[x,y:ℝ].  ((x = y) 
⇒ (λn.<λ_.Ax, Ax, Ax> ∈ x = y))
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
axiom: Ax
Definitions unfolded in proof : 
req: x = y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
uimplies: b supposing a
, 
not: ¬A
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
member-not, 
less_than'_wf, 
absval_wf, 
subtract_wf, 
istype-void, 
nat_plus_wf, 
istype-le, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
lambdaEquality_alt, 
independent_pairEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
universeIsType, 
axiomEquality, 
functionIsType, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    ((x  =  y)  {}\mRightarrow{}  (\mlambda{}n.<\mlambda{}$_{}$.Ax,  Ax,  Ax>  \mmember{}  x  =  y))
Date html generated:
2019_10_16-PM-03_07_06
Last ObjectModification:
2018_11_08-PM-05_56_58
Theory : reals
Home
Index