Nuprl Lemma : member-not
∀[A:ℙ]. ∀[z:Top].  λx.z ∈ ¬A supposing ¬A
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
not: ¬A
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
istype-void, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
Error :universeIsType, 
because_Cache, 
sqequalRule, 
Error :functionIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  \mforall{}[z:Top].    \mlambda{}x.z  \mmember{}  \mneg{}A  supposing  \mneg{}A
Date html generated:
2019_06_20-AM-11_14_29
Last ObjectModification:
2018_10_27-PM-05_04_44
Theory : core_2
Home
Index