Nuprl Lemma : member-not

[A:ℙ]. ∀[z:Top].  λx.z ∈ ¬supposing ¬A


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] top: Top prop: not: ¬A member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a not: ¬A implies:  Q member: t ∈ T false: False prop:
Lemmas referenced :  istype-void istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaEquality_alt,  sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination Error :universeIsType,  because_Cache sqequalRule Error :functionIsType,  hypothesisEquality cut introduction extract_by_obid universeEquality

Latex:
\mforall{}[A:\mBbbP{}].  \mforall{}[z:Top].    \mlambda{}x.z  \mmember{}  \mneg{}A  supposing  \mneg{}A



Date html generated: 2019_06_20-AM-11_14_29
Last ObjectModification: 2018_10_27-PM-05_04_44

Theory : core_2


Home Index