Nuprl Lemma : rminus-int

[n:ℤ]. (-(r(n)) r(-n) ∈ ℝ)


Proof




Definitions occuring in Statement :  rminus: -(x) int-to-real: r(n) real: uall: [x:A]. B[x] minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: squash: T prop: int-to-real: r(n) rminus: -(x) nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_minus_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermConstant_wf itermMultiply_wf itermMinus_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties regular-int-seq_wf nat_plus_wf int-to-real_wf rminus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule imageMemberEquality baseClosed setEquality functionEquality intEquality natural_numberEquality introduction imageElimination dependent_set_memberEquality functionExtensionality dependent_functionElimination because_Cache unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n:\mBbbZ{}].  (-(r(n))  =  r(-n))



Date html generated: 2016_05_18-AM-06_48_49
Last ObjectModification: 2016_01_17-AM-01_45_37

Theory : reals


Home Index