Nuprl Lemma : req_functionality
∀[x1,x2,y1,y2:ℝ].  (uiff(x1 = y1;x2 = y2)) supposing ((y1 = y2) and (x1 = x2))
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
req-equiv, 
req_witness, 
req_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
productElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[x1,x2,y1,y2:\mBbbR{}].    (uiff(x1  =  y1;x2  =  y2))  supposing  ((y1  =  y2)  and  (x1  =  x2))
Date html generated:
2016_05_18-AM-06_50_36
Last ObjectModification:
2015_12_28-AM-00_29_18
Theory : reals
Home
Index