Nuprl Lemma : radd-int

[a,b:ℤ].  ((r(a) r(b)) r(a b))


Proof




Definitions occuring in Statement :  req: y radd: b int-to-real: r(n) uall: [x:A]. B[x] add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a radd: b implies:  Q nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: subtype_rel: A ⊆B all: x:A. B[x] top: Top real: guard: {T} iff: ⇐⇒ Q rev_implies:  Q int-to-real: r(n) bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] absval: |i| subtract: m
Lemmas referenced :  zero-mul mul-distributes-right add-commutes add-swap zero-add mul-associates mul-commutes minus-one-mul minus-add mul-distributes add-associates bdd-diff_weakening accelerate-bdd-diff bdd-diff_functionality nat_wf subtract_wf absval_wf all_wf le_wf false_wf l_sum_nil_lemma l_sum_cons_lemma map_nil_lemma map_cons_lemma iff_weakening_equal reg-seq-list-add-as-l_sum true_wf squash_wf bdd-diff_wf length_wf regular-int-seq_wf nat_plus_wf length_of_nil_lemma length_of_cons_lemma nil_wf real_wf cons_wf reg-seq-list-add_wf less_than_wf accelerate_wf req_witness int-to-real_wf radd_wf req-iff-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis addEquality productElimination independent_isectElimination independent_functionElimination intEquality sqequalRule isect_memberEquality because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed applyEquality lambdaEquality dependent_functionElimination voidElimination voidEquality setEquality functionEquality setElimination rename imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_pairFormation lambdaFormation multiplyEquality minusEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    ((r(a)  +  r(b))  =  r(a  +  b))



Date html generated: 2016_05_18-AM-06_51_38
Last ObjectModification: 2016_01_17-AM-01_46_36

Theory : reals


Home Index