Nuprl Lemma : reg-seq-list-add_wf
∀[L:ℝ List]. (reg-seq-list-add(L) ∈ {f:ℕ+ ⟶ ℤ| ||L||-regular-seq(f)} )
Proof
Definitions occuring in Statement : 
reg-seq-list-add: reg-seq-list-add(L)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
real: ℝ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
regular-int-seq: k-regular-seq(f)
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
top: Top
, 
compose: f o g
, 
nat: ℕ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
sq_type: SQType(T)
, 
int_lower: {...i}
, 
sq_stable: SqStable(P)
Lemmas referenced : 
le_wf, 
sq_stable__le, 
l_sum-upper-bound-map, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_plus_properties, 
int_subtype_base, 
subtype_base_sq, 
le_weakening, 
l_sum-triangle-inequality, 
le_functionality, 
map-map, 
nat_wf, 
l_sum_wf, 
subtract_wf, 
absval_wf, 
map_wf, 
l_sum-mul-left, 
iff_weakening_equal, 
reg-seq-list-add-as-l_sum, 
true_wf, 
squash_wf, 
int-value-type, 
subtype_rel_list, 
nat_plus_wf, 
cbv_list_accum_wf, 
list_wf, 
real_wf, 
length_wf, 
regular-int-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
functionEquality, 
intEquality, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
addEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
multiplyEquality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[L:\mBbbR{}  List].  (reg-seq-list-add(L)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  ||L||-regular-seq(f)\}  )
Date html generated:
2016_05_18-AM-06_48_12
Last ObjectModification:
2016_01_17-AM-01_45_46
Theory : reals
Home
Index