Nuprl Lemma : reg-seq-list-add_wf

[L:ℝ List]. (reg-seq-list-add(L) ∈ {f:ℕ+ ⟶ ℤ||L||-regular-seq(f)} )


Proof




Definitions occuring in Statement :  reg-seq-list-add: reg-seq-list-add(L) real: regular-int-seq: k-regular-seq(f) length: ||as|| list: List nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: reg-seq-list-add: reg-seq-list-add(L) subtype_rel: A ⊆B uimplies: supposing a real: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q regular-int-seq: k-regular-seq(f) all: x:A. B[x] nat_plus: + top: Top compose: g nat: rev_uimplies: rev_uimplies(P;Q) ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A sq_type: SQType(T) int_lower: {...i} sq_stable: SqStable(P)
Lemmas referenced :  le_wf sq_stable__le l_sum-upper-bound-map int_formula_prop_wf int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermAdd_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties int_subtype_base subtype_base_sq le_weakening l_sum-triangle-inequality le_functionality map-map nat_wf l_sum_wf subtract_wf absval_wf map_wf l_sum-mul-left iff_weakening_equal reg-seq-list-add-as-l_sum true_wf squash_wf int-value-type subtype_rel_list nat_plus_wf cbv_list_accum_wf list_wf real_wf length_wf regular-int-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry lambdaEquality functionEquality intEquality applyEquality independent_isectElimination setElimination rename because_Cache natural_numberEquality addEquality imageElimination imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination lambdaFormation isect_memberEquality voidElimination voidEquality multiplyEquality dependent_functionElimination instantiate cumulativity unionElimination dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[L:\mBbbR{}  List].  (reg-seq-list-add(L)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  ||L||-regular-seq(f)\}  )



Date html generated: 2016_05_18-AM-06_48_12
Last ObjectModification: 2016_01_17-AM-01_45_46

Theory : reals


Home Index