Nuprl Lemma : l_sum-triangle-inequality
∀[T:Type]. ∀[L:T List]. ∀[f,g:T ⟶ ℤ].
  (|l_sum(map(λa.f[a];L)) - l_sum(map(λa.g[a];L))| ≤ l_sum(map(λa.|f[a] - g[a]|;L)))
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
map: map(f;as)
, 
list: T List
, 
absval: |i|
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
absval: |i|
, 
subtract: n - m
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
true: True
Lemmas referenced : 
l_sum-triangle-inequality-general, 
list_wf, 
istype-universe, 
le_wf, 
squash_wf, 
true_wf, 
istype-int, 
add-zero, 
l_sum_wf, 
map_wf, 
absval_wf, 
subtract_wf, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
int_subtype_base, 
istype-false, 
minus-zero, 
zero-add, 
absval_pos, 
istype-le, 
decidable__equal_int, 
add-is-int-iff, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :universeIsType, 
instantiate, 
universeEquality, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
Error :inhabitedIsType, 
because_Cache, 
cumulativity, 
independent_isectElimination, 
intEquality, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
Error :dependent_set_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
productElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
imageMemberEquality, 
Error :functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbZ{}].
    (|l\_sum(map(\mlambda{}a.f[a];L))  -  l\_sum(map(\mlambda{}a.g[a];L))|  \mleq{}  l\_sum(map(\mlambda{}a.|f[a]  -  g[a]|;L)))
Date html generated:
2019_06_20-PM-01_44_33
Last ObjectModification:
2018_10_18-PM-00_39_33
Theory : list_1
Home
Index