Nuprl Lemma : l_sum-triangle-inequality

[T:Type]. ∀[L:T List]. ∀[f,g:T ⟶ ℤ].
  (|l_sum(map(λa.f[a];L)) l_sum(map(λa.g[a];L))| ≤ l_sum(map(λa.|f[a] g[a]|;L)))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) map: map(f;as) list: List absval: |i| uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: squash: T subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) absval: |i| subtract: m false: False not: ¬A implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top true: True
Lemmas referenced :  l_sum-triangle-inequality-general list_wf istype-universe le_wf squash_wf true_wf istype-int add-zero l_sum_wf map_wf absval_wf subtract_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base istype-false minus-zero zero-add absval_pos istype-le decidable__equal_int add-is-int-iff full-omega-unsat intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality Error :universeIsType,  instantiate universeEquality natural_numberEquality hyp_replacement equalitySymmetry sqequalRule applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity Error :inhabitedIsType,  because_Cache cumulativity independent_isectElimination intEquality independent_pairFormation Error :lambdaFormation_alt,  setElimination rename Error :dependent_set_memberEquality_alt,  dependent_functionElimination independent_functionElimination unionElimination pointwiseFunctionality promote_hyp productElimination baseApply closedConclusion baseClosed approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination imageMemberEquality Error :functionIsType

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbZ{}].
    (|l\_sum(map(\mlambda{}a.f[a];L))  -  l\_sum(map(\mlambda{}a.g[a];L))|  \mleq{}  l\_sum(map(\mlambda{}a.|f[a]  -  g[a]|;L)))



Date html generated: 2019_06_20-PM-01_44_33
Last ObjectModification: 2018_10_18-PM-00_39_33

Theory : list_1


Home Index