Nuprl Lemma : l_sum-triangle-inequality-general
∀[T:Type]. ∀[L:T List]. ∀[x,y:ℤ]. ∀[f,g:T ⟶ ℤ].
  (|(l_sum(map(λa.f[a];L)) + x) - l_sum(map(λa.g[a];L)) + y| ≤ (l_sum(map(λa.|f[a] - g[a]|;L)) + |x - y|))
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
map: map(f;as)
, 
list: T List
, 
absval: |i|
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
list_accum-triangle-inequality, 
list_wf, 
absval_wf, 
subtract_wf, 
nat_wf, 
l_sum_as_accum
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
intEquality, 
universeEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
sqequalRule
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x,y:\mBbbZ{}].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbZ{}].
    (|(l\_sum(map(\mlambda{}a.f[a];L))  +  x)  -  l\_sum(map(\mlambda{}a.g[a];L))  +  y|  \mleq{}  (l\_sum(map(\mlambda{}a.|f[a]  -  g[a]|;L))
      +  |x  -  y|))
Date html generated:
2016_05_14-PM-02_53_51
Last ObjectModification:
2015_12_26-PM-02_33_48
Theory : list_1
Home
Index