Nuprl Lemma : list_accum-triangle-inequality

[T:Type]. ∀[L:T List]. ∀[x,y:ℤ]. ∀[f,g:T ⟶ ℤ].
  (|accumulate (with value and list item a):
     f[a]
    over list:
      L
    with starting value:
     x) accumulate (with value and list item a):
           g[a]
          over list:
            L
          with starting value:
           y)| ≤ accumulate (with value and list item a):
                  |f[a] g[a]|
                 over list:
                   L
                 with starting value:
                  |x y|))


Proof




Definitions occuring in Statement :  list_accum: list_accum list: List absval: |i| uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] subtype_rel: A ⊆B implies:  Q all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: le: A ≤ B and: P ∧ Q nat: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  guard: {T}
Lemmas referenced :  list_induction uall_wf le_wf absval_wf subtract_wf list_accum_wf list_wf list_accum_nil_lemma decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf less_than'_wf list_accum_cons_lemma nat_wf intformand_wf itermAdd_wf int_formula_prop_and_lemma int_term_value_add_lemma decidable__equal_int intformeq_wf itermSubtract_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_minus_lemma add-is-int-iff subtract-is-int-iff false_wf and_wf equal_wf le_functionality le_weakening int-triangle-inequality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality intEquality because_Cache functionEquality cumulativity addEquality applyEquality functionExtensionality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality computeAll productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation rename universeEquality setElimination independent_pairFormation pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed dependent_set_memberEquality setEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x,y:\mBbbZ{}].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbZ{}].
    (|accumulate  (with  value  s  and  list  item  a):
          s  +  f[a]
        over  list:
            L
        with  starting  value:
          x)  -  accumulate  (with  value  s  and  list  item  a):
                      s  +  g[a]
                    over  list:
                        L
                    with  starting  value:
                      y)|  \mleq{}  accumulate  (with  value  s  and  list  item  a):
                                    s  +  |f[a]  -  g[a]|
                                  over  list:
                                      L
                                  with  starting  value:
                                    |x  -  y|))



Date html generated: 2016_10_21-AM-10_01_08
Last ObjectModification: 2016_07_12-AM-05_15_24

Theory : list_1


Home Index