Nuprl Lemma : reg-seq-list-add-as-l_sum
∀[L:(ℕ+ ⟶ ℤ) List]. (reg-seq-list-add(L) = (λn.l_sum(map(λx.(x n);L))) ∈ (ℕ+ ⟶ ℤ))
Proof
Definitions occuring in Statement : 
reg-seq-list-add: reg-seq-list-add(L)
, 
l_sum: l_sum(L)
, 
map: map(f;as)
, 
list: T List
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
l_sum_as_accum, 
cbv_list_accum-is-list_accum, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_plus_properties, 
int-value-type, 
list_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lambdaEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
intEquality, 
hypothesisEquality, 
natural_numberEquality, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll
Latex:
\mforall{}[L:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  List].  (reg-seq-list-add(L)  =  (\mlambda{}n.l\_sum(map(\mlambda{}x.(x  n);L))))
Date html generated:
2016_05_18-AM-06_48_08
Last ObjectModification:
2016_01_17-AM-01_45_12
Theory : reals
Home
Index