Nuprl Lemma : reg-seq-list-add-as-l_sum

[L:(ℕ+ ⟶ ℤList]. (reg-seq-list-add(L) n.l_sum(map(λx.(x n);L))) ∈ (ℕ+ ⟶ ℤ))


Proof




Definitions occuring in Statement :  reg-seq-list-add: reg-seq-list-add(L) l_sum: l_sum(L) map: map(f;as) list: List nat_plus: + uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] reg-seq-list-add: reg-seq-list-add(L) member: t ∈ T nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_sum_as_accum cbv_list_accum-is-list_accum int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties int-value-type list_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lambdaEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin functionEquality intEquality hypothesisEquality natural_numberEquality addEquality applyEquality setElimination rename dependent_functionElimination because_Cache unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll

Latex:
\mforall{}[L:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  List].  (reg-seq-list-add(L)  =  (\mlambda{}n.l\_sum(map(\mlambda{}x.(x  n);L))))



Date html generated: 2016_05_18-AM-06_48_08
Last ObjectModification: 2016_01_17-AM-01_45_12

Theory : reals


Home Index