Nuprl Lemma : cbv_list_accum-is-list_accum

[T,T':Type]. ∀[l:T List]. ∀[y:T']. ∀[f:T' ⟶ T ⟶ T'].
  cbv_list_accum(x,a.f[x;a];y;l) accumulate (with value and list item a):
                                    f[x;a]
                                   over list:
                                     l
                                   with starting value:
                                    y) 
  supposing value-type(T')


Proof




Definitions occuring in Statement :  cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) list_accum: list_accum list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) list_accum: list_accum nil: [] it: cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) has-value: (a)↓
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf value-type_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int value-type-has-value list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity equalityTransitivity equalitySymmetry functionEquality applyEquality because_Cache unionElimination callbyvalueReduce sqleReflexivity promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality universeEquality

Latex:
\mforall{}[T,T':Type].  \mforall{}[l:T  List].  \mforall{}[y:T'].  \mforall{}[f:T'  {}\mrightarrow{}  T  {}\mrightarrow{}  T'].
    cbv\_list\_accum(x,a.f[x;a];y;l)  \msim{}  accumulate  (with  value  x  and  list  item  a):
                                                                        f[x;a]
                                                                      over  list:
                                                                          l
                                                                      with  starting  value:
                                                                        y) 
    supposing  value-type(T')



Date html generated: 2017_04_14-AM-09_26_03
Last ObjectModification: 2017_02_27-PM-04_00_12

Theory : list_1


Home Index