Nuprl Lemma : accelerate-bdd-diff

k:ℕ+. ∀[f:{f:ℕ+ ⟶ ℤk-regular-seq(f)} ]. bdd-diff(accelerate(k;f);f)


Proof




Definitions occuring in Statement :  accelerate: accelerate(k;f) bdd-diff: bdd-diff(f;g) regular-int-seq: k-regular-seq(f) nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] bdd-diff: bdd-diff(f;g) exists: x:A. B[x] member: t ∈ T nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) le: A ≤ B accelerate: accelerate(k;f) has-value: (a)↓ less_than: a < b less_than': less_than'(a;b) int_nzero: -o nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) ge: i ≥  subtract: m regular-int-seq: k-regular-seq(f) sq_stable: SqStable(P)
Lemmas referenced :  left_mul_subtract_distrib nat_plus_subtype_nat sq_stable__le rem_bounds_absval_le add_functionality_wrt_le absval_sym add_functionality_wrt_eq add-commutes minus-one-mul add-associates mul-associates int-triangle-inequality le_weakening le_functionality nequal_wf mul_nat_plus div_rem_sum2 int-value-type value-type-has-value regular-int-seq_wf set_wf all_wf nat_plus_wf less_than'_wf int_term_value_subtract_lemma itermSubtract_wf decidable__equal_int subtype_base_sq less_than_wf set_subtype_base int_subtype_base absval_pos iff_weakening_equal nat_wf absval_mul true_wf squash_wf equal_wf int_formula_prop_eq_lemma intformeq_wf absval_nat_plus accelerate_wf subtract_wf absval_wf mul_cancel_in_le le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermMultiply_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation dependent_pairFormation dependent_set_memberEquality addEquality multiplyEquality natural_numberEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality cut lemma_by_obid isectElimination hypothesis dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll introduction applyEquality because_Cache imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination sqequalIntensionalEquality baseApply closedConclusion instantiate independent_pairEquality axiomEquality functionEquality callbyvalueReduce remainderEquality minusEquality cumulativity

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}[f:\{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  k-regular-seq(f)\}  ].  bdd-diff(accelerate(k;f);f)



Date html generated: 2016_05_18-AM-06_47_19
Last ObjectModification: 2016_01_17-AM-01_45_52

Theory : reals


Home Index