Nuprl Lemma : mul_cancel_in_le
∀[a,b:ℤ]. ∀[n:ℕ+].  a ≤ b supposing (n * a) ≤ (n * b)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
less_than'_wf, 
le_wf, 
nat_plus_wf, 
multiply-is-int-iff, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
decidable__lt, 
equal_wf, 
false_wf, 
not-lt-2, 
decidable__int_equal, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
mul-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
add-associates, 
or_wf, 
mul_cancel_in_lt, 
le_weakening2, 
mul_cancel_in_eq, 
subtype_rel_sets, 
nequal_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
hypothesis, 
axiomEquality, 
multiplyEquality, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
voidElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
unionElimination, 
inlFormation, 
independent_pairFormation, 
lambdaFormation, 
inrFormation, 
addEquality, 
voidEquality, 
minusEquality, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
setEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    a  \mleq{}  b  supposing  (n  *  a)  \mleq{}  (n  *  b)
Date html generated:
2017_04_14-AM-07_20_28
Last ObjectModification:
2017_02_27-PM-02_53_53
Theory : arithmetic
Home
Index