Nuprl Lemma : mul_cancel_in_le

[a,b:ℤ]. ∀[n:ℕ+].  a ≤ supposing (n a) ≤ (n b)


Proof




Definitions occuring in Statement :  nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: nat_plus: + subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q guard: {T} subtract: m top: Top less_than': less_than'(a;b) true: True int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  less_than'_wf le_wf nat_plus_wf multiply-is-int-iff set_subtype_base less_than_wf int_subtype_base decidable__lt equal_wf false_wf not-lt-2 decidable__int_equal not-equal-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes mul-commutes add_functionality_wrt_le le-add-cancel add-associates or_wf mul_cancel_in_lt le_weakening2 mul_cancel_in_eq subtype_rel_sets nequal_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination hypothesis axiomEquality multiplyEquality setElimination rename isect_memberEquality equalityTransitivity equalitySymmetry intEquality voidElimination baseApply closedConclusion baseClosed applyEquality natural_numberEquality independent_isectElimination unionElimination inlFormation independent_pairFormation lambdaFormation inrFormation addEquality voidEquality minusEquality independent_functionElimination addLevel orFunctionality setEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    a  \mleq{}  b  supposing  (n  *  a)  \mleq{}  (n  *  b)



Date html generated: 2017_04_14-AM-07_20_28
Last ObjectModification: 2017_02_27-PM-02_53_53

Theory : arithmetic


Home Index