Nuprl Lemma : mul_cancel_in_eq
∀[a,b:ℤ]. ∀[n:ℤ-o].  a = b ∈ ℤ supposing (n * a) = (n * b) ∈ ℤ
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
gt: i > j
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
equal_wf, 
int_nzero_wf, 
nat_plus_wf, 
decidable__lt, 
or_wf, 
less_than_wf, 
false_wf, 
not-gt-2, 
decidable__int_equal, 
not-equal-2, 
not-lt-2, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
add-associates, 
gt_wf, 
mul_preserves_lt, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
minus-one-mul, 
mul-associates, 
minus-one-mul-top, 
mul-swap, 
mul-commutes, 
one-mul, 
subtract_wf, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
add-zero, 
subtype_base_sq, 
int_subtype_base, 
not-equal-implies-less, 
subtype_rel_self, 
less-iff-le, 
le_reflexive, 
zero-add, 
minus-zero, 
omega-shadow, 
int_nzero_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_isectElimination, 
inrFormation, 
addEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
voidEquality, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
dependent_set_memberEquality, 
minusEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    a  =  b  supposing  (n  *  a)  =  (n  *  b)
Date html generated:
2017_04_14-AM-07_20_22
Last ObjectModification:
2017_02_27-PM-02_53_57
Theory : arithmetic
Home
Index