Nuprl Lemma : mul_cancel_in_eq

[a,b:ℤ]. ∀[n:ℤ-o].  b ∈ ℤ supposing (n a) (n b) ∈ ℤ


Proof




Definitions occuring in Statement :  int_nzero: -o uimplies: supposing a uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] int_nzero: -o uimplies: supposing a prop: all: x:A. B[x] implies:  Q nat_plus: + gt: i > j decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) guard: {T} subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True subtract: m sq_type: SQType(T) nequal: a ≠ b ∈  less_than: a < b squash: T
Lemmas referenced :  equal_wf int_nzero_wf nat_plus_wf decidable__lt or_wf less_than_wf false_wf not-gt-2 decidable__int_equal not-equal-2 not-lt-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel add-associates gt_wf mul_preserves_lt less_than_transitivity1 le_weakening less_than_irreflexivity minus-one-mul mul-associates minus-one-mul-top mul-swap mul-commutes one-mul subtract_wf add-mul-special two-mul mul-distributes-right zero-mul add-zero subtype_base_sq int_subtype_base not-equal-implies-less subtype_rel_self less-iff-le le_reflexive zero-add minus-zero omega-shadow int_nzero_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality multiplyEquality setElimination rename hypothesisEquality hypothesis because_Cache isect_memberFormation sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation dependent_functionElimination unionElimination inlFormation independent_pairFormation voidElimination productElimination independent_isectElimination inrFormation addEquality natural_numberEquality applyEquality lambdaEquality voidEquality independent_functionElimination addLevel orFunctionality dependent_set_memberEquality minusEquality promote_hyp instantiate cumulativity imageMemberEquality baseClosed

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    a  =  b  supposing  (n  *  a)  =  (n  *  b)



Date html generated: 2017_04_14-AM-07_20_22
Last ObjectModification: 2017_02_27-PM-02_53_57

Theory : arithmetic


Home Index