Nuprl Lemma : decidable__int_equal
∀i,j:ℤ.  Dec(i = j ∈ ℤ)
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
member: t ∈ T
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
less-trichotomy, 
not_wf, 
equal-wf-base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
intEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
int_eqEquality, 
inlEquality, 
axiomEquality, 
hypothesis, 
isectElimination, 
because_Cache, 
inrEquality, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
voidElimination, 
applyEquality
Latex:
\mforall{}i,j:\mBbbZ{}.    Dec(i  =  j)
Date html generated:
2019_06_20-AM-11_22_56
Last ObjectModification:
2018_08_17-AM-11_32_11
Theory : arithmetic
Home
Index