Nuprl Lemma : div_rem_sum2

[a:ℤ]. ∀[n:ℤ-o].  (n (a ÷ n) rem n)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m divide: n ÷ m multiply: m subtract: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  div_rem_sum int_nzero_wf int_subtype_base set_subtype_base nequal_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality because_Cache hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalIntensionalEquality applyEquality sqequalRule baseApply closedConclusion baseClosed lambdaEquality natural_numberEquality independent_isectElimination

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (n  *  (a  \mdiv{}  n)  \msim{}  a  -  a  rem  n)



Date html generated: 2016_10_21-AM-09_58_38
Last ObjectModification: 2016_07_12-AM-05_12_38

Theory : int_2


Home Index